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Machine-Assisted Discovery of Chondroitinase ABC
Complexes toward Sustained Neural Regeneration

Shashank Kosuri, Carlos H. Borca, Heloise Mugnier, Matthew Tamasi, Roshan A. Patel,
Isabel Perez, Suneel Kumar, Zachary Finkel, Rene Schloss, Li Cai, Martin L. Yarmush,
Michael A. Webb,* and Adam J. Gormley*

Among the many molecules that contribute to glial scarring, chondroitin
sulfate proteoglycans (CSPGs) are known to be potent inhibitors of neuronal
regeneration. Chondroitinase ABC (ChABC), a bacterial lyase, degrades the
glycosaminoglycan (GAG) side chains of CSPGs and promotes tissue
regeneration. However, ChABC is thermally unstable and loses all activity
within a few hours at 37 °C under dilute conditions. To overcome this
limitation, the discovery of a diverse set of tailor-made random copolymers
that complex and stabilize ChABC at physiological temperature is reported.
The copolymer designs, which are based on chain length and composition of
the copolymers, are identified using an active machine learning paradigm,
which involves iterative copolymer synthesis, testing for ChABC
thermostability upon copolymer complexation, Gaussian process regression
modeling, and Bayesian optimization. Copolymers are synthesized by
automated PET-RAFT and thermostability of ChABC is assessed by retained
enzyme activity (REA) after 24 h at 37 °C. Significant improvements in REA in
three iterations of active learning are demonstrated while identifying
exceptionally high-performing copolymers. Most remarkably, one designed
copolymer promotes residual ChABC activity near 30%, even after one week
and notably outperforms other common stabilization methods for ChABC.
Together, these results highlight a promising pathway toward sustained tissue
regeneration.

1. Introduction

Central Nervous System (CNS) injuries have devastating, long-
term physical, psychological, and socio-economic consequences
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for patients and families. Although mor-
tality rates have substantially improved in
patients with CNS injuries, improvement
in functional outcomes remains elusive.
When it comes to functional recovery, many
studies point to a general common theme:
CNS neurons attempt to regenerate after
a traumatic injury, but the post-injury en-
vironment is highly inhibitory and results
in abortive regeneration.[1] This is mainly
due to the complex pathophysiology of the
CNS, which undergoes enormous biochem-
ical and physical changes post-injury. Ini-
tial trauma results in extensive tissue dam-
age, compromise of the blood-brain/spinal
cord vasculature, and necrotic cell death.
Compromised vasculature allows an influx
of inflammatory cells that begin secret-
ing pro-inflammatory cytokines and vasoac-
tive peptides that potentiate further dam-
age resulting in edema, excitotoxicity, al-
tered gene expression, and enhanced cell
signaling. Reactive astrocytes surround the
site of injury and secrete a wide range of
pro-inflammatory factors including chon-
droitin sulfate proteoglycans (CSPGs) re-
sulting in a dense network of scar tissue that
acts as a mechanical and chemical barrier to

tissue regeneration.[2] Although glial scar and CSPGs within the
scar play an important role in isolating injury site from healthy
tissue, thereby minimizing uncontrolled tissue damage, their
highly inhibitory nature sacrifices long-distance functional re-
generation. CSPGs are known to be potent inhibitors of neu-
rite outgrowth, and their inhibitory nature has been well docu-
mented in vitro and in vivo.[3] CSPG family members share two
common features: a protein core that varies in structure, and gly-
cosaminoglycan (GAG) side chains that vary in number and sul-
fation pattern.[4] Extensive research has shown that high levels of
CSPGs in CNS injury models in vivo correlates well with pres-
ence of dystrophic growth cones that are hallmarks of failed at-
tempts at neuronal regeneration.[5] The growth suppressive na-
ture of CSPGs is mainly attributed to their GAG side chains
and sulfation pattern and degrading these inhibitory molecules
has become a viable therapeutic strategy for promoting tissue
regeneration.[3a]
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Figure 1. Workflow schematic. Automated polymer synthesis was con-
ducted using a Hamilton Microlab Starlet. Initially, a library with over 500
unique copolymers were quickly evaluated for their ability to retain ChABC
activity at 37 °C for 24 h. Quantified retained enzyme activity (REA) in-
formation along with polymer composition and chain length were used
to train a Gaussian Process Regression model (GPR) that predicts REA
based on copolymer chemistry and chain length. Using active learning,
24 new polymers were proposed based on GPR modeling, and these poly-
mers were subsequently synthesized and tested to provide additional data
for GPR. After three of these active learning iterations, a few of the most
promising designs were selected for further characterization.

Chondroitinase ABC (ChABC), a 115 kDa bacterial lyase that
degrades the GAG side chains of CSPGs, has proven highly effec-
tive in promoting axonal sprouting and neuronal regeneration in
various animal models.[6] However, its use as a therapeutic is lim-
ited by its thermal instability as it completely loses activity within
a few hours at 37 °C under dilute conditions.[7] To maintain ther-
apeutic efficacy, continuous intrathecal administration every two
weeks for up to six weeks is required. Therefore, there is an im-
mediate need to develop highly stable, nanodispersed ChABC for
glial scar degradation. Several approaches have been utilized for
stabilizing ChABC, such as stabilization in high-concentration
sugar solutions (1 m trehalose, 2.5 m sucrose), immobilization
onto porous scaffolds, and protein structure modification.[8]

Herein, we report the discovery of new polymer-enzyme com-
plexes (PECs) of thermostabilized ChABC enabled by robotic
synthesis, high-throughput testing, and data-driven optimiza-
tion (Figure 1). PECs contain enzyme wrapped inside a syn-

thetic chaperone-like polymeric shell that safeguards it from sur-
rounding harsh microenvironments.[9] However, rational identi-
fication of complementary copolymer composition on a case-by-
case basis is highly time consuming and labor intensive. Mean-
while, data-driven design of copolymers has been pursued in
silico.[10] Recent advances in the field of oxygen tolerant polymer
chemistries now enable synthesis of complex polymers in bench
top well plates. To increase throughput, the Gormley lab has
programmed liquid-handling robotics to perform autonomous
polymer chemistry and post-polymerization functionalization in
well plates, which increases synthetic efficiency while main-
taining excellent reproducibility.[11] This allows for automated
and facile generation of datasets containing polymer chemistry
and retained enzyme activity (REA) that can be effectively used
to train machine learning (ML) models to represent the com-
plex structure-activity relationship between polymer-enzyme in-
teractions and REA. Using active learning—a data acquisition
paradigm wherein new data points for inclusion in ML model
training are selected by interactive query—three iterations of 24
copolymer candidates were proposed for experimental synthesis
and testing. From these 72 new copolymers, the most promising
were selected to conduct preliminary long-term studies, and the
best of these was selected for further biological and biophysical
characterization.

2. Results and Discussion

2.1. Data-Driven Design of PECs

We used active machine learning to identify copolymer designs
with high likelihood to stabilize ChABC following thermal expo-
sure based on iterative synthesis, testing, modeling and optimiza-
tion (Figure 1, top); all copolymers were restricted to have four or
fewer distinct monomers and chain lengths with degree of poly-
merization (DP) between 50 and 200 in increments of 25. For this
study, we selected eight methacrylate or methacrylamide-based
monomers based on their compatibility with PET-RAFT polymer-
ization, their good solubility in DMSO, and their chemical di-
versity. In particular, these monomers are subdivided into three
groups: hydrophobic, hydrophilic and ionic based on their logP
and pKa values. Hydrophilic monomers were selected to improve
polymer solubility in buffers and also to interact with the en-
zyme through hydrogen bonding. Hydrophobic monomers were
selected to interact with the non-polar residues present on the
protein surface while ionic monomers were selected to interact
with charged amino acid residues. The active learning process
was seeded by a dataset of 504 copolymers with systematic vari-
ation in monomer composition and chain length (see Seed Li-
brary Design) and accompanying data on their ability to stabilize
ChABC, as quantified by REA at 37 °C for 24 h.

Figure 2A shows the distribution of REAs of all samples tested,
including the seed database and each set of candidates produced
by the active learning scheme. The three iterations (1–3) of active
learning resulted in remarkable improvement of REA relative to
the seed data, with many designs yielding enhanced activity above
100%. This is reflected by an overall upward trend of the distri-
bution of data in terms of quartile positions, median, mean, and
maximum. In the original seed dataset, we observed an average
REA of 27.1% for 504 samples with one sample exhibiting 125%
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Figure 2. Generational improvement for PECs. A) Comparison of distribu-
tions of REA for ChABC-PECs for the seed database and three iterations of
active learning. The distributions are represented as violins colored by REA
as well as black candlesticks delimiting the second and third quartiles of
the data, meaning that 50% of all data points in each iteration is included
in the candle. The gray dash indicates the median REA, and the white circle
indicates the average. The transparent gray shading is a guide to the eye to
follow changes in summary statistics. B) Comparison of average compo-
sitions of copolymers in the top quartile for the seed dataset and polymers
proposed in the three iterations of active learning. C) Comparison of av-
erage compositions of copolymers in the top quartile for the seed dataset
and polymers proposed in the three iterations of active learning. In (B) and
(C), the width of horizontal bars indicate the fraction of incorporation for
each monomer; bars are organized in decreasing order of octanol–water
partition coefficient, such that more hydrophobic monomers are at the left
and more hydrophilic monomers are at the right.

of the native enzyme activity at the end of 24 h. The average REA
of samples across different iterations improved with global aver-
age REAs of 50.3%, 64.2%, and 111.4% for iterations 1, 2, and 3,
respectively. The highest performing samples for iterations 1, 2,
and 3 exhibited REAs of 129.4%, 146%, and 148%, respectively.
Details of the copolymers along with REA for iterations 1, 2, and

3 are given in the supporting information (Tables S1–S3, Sup-
porting Information). Native enzyme activity at t = 0 served as
positive control for all experiments and residual enzyme activity
after heating at 37 °C for 24 h served as negative control. Because
native enzyme retained some amount of residual activity (<1–
2%) depending on the batch used, some of the PECs destabilized
the enzyme resulting in negative REA values (Tables S1–S3, Sup-
porting Information).

Figure 2B presents an aggregated analysis of the average REA
and average polymer composition for ChABC-PECs in the top
quartile for REA, and Figure 2C shows an identical analysis for
those in the bottom quartile. Variations of average composition of
the top quartiles of the different sets of polymers are small, espe-
cially when compared to those of the bottom quartiles. Neverthe-
less, the average REA increases upon successive iterations of ac-
tive learning. This indicates a delicate balance of polymer chem-
istry is required to achieve high-performing polymers and high-
lights the underlying challenge of the polymer design task. Com-
paring the second and third iterations, the complete removal of
DMAPMA and SPMA increases average REA by more than 10%.
This is likely related to a notable imbalance between the fractions
of more hydrophobic versus more hydrophilic monomers. In this
scenario, the active learning process identifies that a preponder-
ance of hydrophilic monomers is more likely associated with high
REA. However, trying to rationalize design choices from active
learning is not always straightforward because apparently similar
compositions can yield drastically different results. By compari-
son, the bottom quartile ChABC-PECs exhibit substantial chem-
ical diversity with no obvious trend. In general, this seems sen-
sible as there are likely many more copolymers that do not effec-
tively stabilize ChABC compared to those that do. We note that
the degree of polymerization did not seem to influence the GPR
model as much as the variations in polymeric composition, sug-
gesting it is a relatively less important design feature for ChABC,
at least over the range studied here. These observations highlight
the importance of implementing an iterative active learning ap-
proach: it can capture fine details that could easily escape a ra-
tional design approach, and it has a higher probability of success
compared to a random or systematic search.

2.2. Long-Term Stability Study in Artificial Cerebrospinal Fluid
(aCSF)

To assess the long-term stability of designed ChABC-PECs, we
selected the top five copolymers identified during active learning
and performed an initial evaluation of their propensity to sus-
tain ChABC activity over the course of five days (Figure S1, Sup-
porting Information). The concentration of polymers used for
this study was 12.5 × 10−6 m and the enzyme concentration was
maintained at 1 ng μL−1 (8.8 × 10−9 m). Of these, we selected the
PEC with the highest REA retention of ChABC after five days for
additional long-term study and evaluation. The composition of
the best performing copolymer was DEAMA (23.1 mol%): BMA
(33.2 mol%): PEGMA (31.7 mol%): TMAEMA (12.0 mol%) and
had a DP of 75; the molecular weight of the copolymer is 33 kDa
and has a dispersity of Ð = 1.5.

Five copolymer concentrations were tested for the long-term
stability assessment to study the effect of copolymer concentra-
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Figure 3. Retained enzyme activity (REA). A) REA of ChABC in the presence of polymer at different concentrations at 37 °C. PECs at different concen-
trations increased activity of enzyme at t = 0 at least 2–3 fold and maintained high levels of enzyme for the initial few days. B) Comparison of PEC with
common enzyme stabilizers Trehalose and Sucrose. C) PEC retained >100% activity while native ChABC lost all activity within 24 h. D) Activity of native
ChABC and ChABC-PEC (12.5 × 10−6 m) at varying substrate concentrations. Data represented here as mean ± SD, n = 3 for all experiments.

tion on enzyme activity retention. Enzyme concentration was
maintained at 2 ng μL−1 (17.63 × 10−9 m) for long-term stabil-
ity experiments and copolymer concentrations were varied from
6.25–100 × 10−6 m. Remarkably, copolymer at all concentrations
increased the initial activity of the enzyme at t = 0. The ini-
tial activity of the enzyme increased by threefold for 100 and
50 × 10−6 m copolymer concentrations while 2–2.5-fold increases
were observed for 25, 12.5, and 6.25× 10−6 m concentrations (Fig-
ure 3A). At the end of 24 h, PECs at all five concentrations re-
tained around 110–150% native enzyme activity within the same
period. The native enzyme did not retain any activity at the end of
24 h. By contrast, ChABC-PECs continued to retain high levels of
activity (>60%) at the end of 72 h. By the end of day 7, samples at
25 and 12.5× 10−6 m lost all activity but 100, 50, and 6.25× 10−6 m
samples continued to have REAs of 29%, 39%, and 28%, respec-
tively.

The efficiency of PECs to stabilize ChABC was compared with
common enzyme stabilizers trehalose and sucrose at an enzyme
concentration of 2 ng μL−1 (17.63 × 10−9 m). ChABC stabilized
with 1 m trehalose and 2.5 m sucrose lost all enzyme activity
within 24 h while PEC retained 100% activity within the same
time period (Figure 3B,C). While trehalose and sucrose have been
shown to stabilize ChABC in various studies, we suspect that the

Table 1. Kinetic parameters of ChABC with and without copolymer.

Sample Vmax [pmol μg−1 min−1] Km [×10−6 m] Kcat [s−1]

ChABC 18 070 5.01 284.7

ChABC-PEC 37 315 23.62 587.93

inability of these sugars to stabilize in our study is due to the low
concentration of enzyme that was used in this study.[8a,c]

We also investigated the kinetic parameters of ChABC in the
presence of our copolymer and observed a significant increase in
the maximum velocity (Vmax), while the affinity to the substrate
decreased, as can be observed from Km (Table 1, Figure 3D).
Deviation from Michaelis–Menten kinetics is commonly asso-
ciated with substrate inhibition, which is mainly attributed to
simultaneous binding of two or more substrate molecules to
the active site of the enzyme. The fact that the activity of the
enzyme in the presence of polymers is unaffected by substrate
concentration suggests that the polymers prevent interactions
between the substrate and the enzyme that may disrupt the
active site. We therefore hypothesize that the lower activity of
the native enzyme compared to ChABC-PEC could be because
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Figure 4. Dynamic light scattering. Biophysical characterization of
ChABC, copolymer, and ChABC-PEC using DLS.

of substrate inhibition, which is prevented in the presence of the
copolymer resulting in nanodispersed PEC (Figure 3D). Future
experiments are needed to confirm this hypothesis.

2.3. Hydrodynamic Size of PECs Using Dynamic Light Scattering

To characterize the size of PECs in solution, we measured the
hydrodynamic size of copolymer, native enzyme, and PEC us-
ing dynamic light scattering (DLS). The scattering data suggest
that the copolymer is swollen in solution but complexes around
nanodispersed ChABC without forming multi-molecular species
(Figure 4).

2.4. Polymer Solutions Cytotoxicity and Inflammation on
Astrocytes

To evaluate adverse cytotoxic side effects of copolymers, we per-
formed testing on astrocyte cultures. Astrocyte cultures have
been established as previously described.[12] Briefly, astrocytes
seeded in 24 well plates were treated with different concentra-
tions of copolymer on the day of the experiment. After 24 h,
supernatants were collected, and cell viability was assessed us-
ing standard Live/Dead assay. No cytotoxicity was observed even
at the highest concentration of 400 × 10−6 m (7.2 mg L−1) (Fig-
ure 5A). A wide range of concentrations from 400 to 6.25× 10−6 m
were tested for possible cytotoxicity and no adverse effects were
observed at all concentrations (data shown until 100 × 10−6 m).

We wanted to evaluate any inflammatory properties of our
copolymers that could stimulate the secretion of Tumor Necrosis
Factor-alpha (TNF-𝛼) in astrocytes. Lipopolysaccharide (LPS) is a
well-known inflammatory agent that upregulates the secretion of
TNF-𝛼 in astrocytes and has been well characterized. Astrocytes
treated with LPS had high levels of TNF-𝛼 secretion while astro-
cytes treated with copolymers had no significant differences com-
pared to control group (no LPS) (Figure 5B). We also evaluated the
biocompatibility of PECs on astrocytes, and no cytotoxic effects
were observed at tested concentrations (Figure 5C). The polymer
concentrations for the two groups were 12.5 and 6.25 × 10−6 m,
respectively, while the enzyme concentration was maintained at
1 ng μL−1.

Figure 5. Toxicity and activity in vitro. A) No cytotoxity was observed when
astrocytes were treated with heteropolymer at various concentrations. B)
TNF-𝛼 secretion by astrocytes treated with heteropolymers. No inflam-
mation was observed in the presence of our copolymer constructs com-
pared to control group. C) No cytotoxicity was observed when PECs were
treated with astrocytes at two different concentrations. Data presented as
mean ± SD, n = 6–9, p-values calculated using paired comparison plot
with Tukey analysis.
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3. Conclusions

ChABC suffers from poor thermal stability under physiological
conditions, and this severely restricts its use as a viable thera-
peutic option for treating CNS injuries. While various techniques
have been reported for ChABC stabilization, we report the novel
use of copolymers for the very first time to stabilize ChABC in
aCSF. In particular, by coupling automated polymer chemistry
with active learning, we discovered several polymers that stabi-
lize ChABC at physiological temperature in aCSF. In general,
polymers identified by active learning exhibited significantly bet-
ter REA for ChABC compared to a large, systematic screen, and
designs tended to improve with the acquisition of more data. We
further evaluated the long-term stability for one of the designs,
which remarkably stabilized ChABC for over 7 days at a very
low concentration. While polymer chemistry has been histori-
cally low throughput, recent advancements in the field of auto-
mated polymer synthesis using oxygen tolerant chemistries en-
able higher throughput screening of combinatorial polymer li-
braries with relative ease. While systematic exploration-based de-
sign yielded modest results, coupling active learning with high-
throughput experimentation enabled the efficient identification
of unique copolymers with propensity to stabilize ChABC. Im-
portantly, the use of these designed copolymers for thermosta-
bilization of ChABC was shown to be competitive with or supe-
rior to other existing stabilization strategies at very low concen-
trations of ChABC. These encouraging results motivate future
preclinical studies to test the ability of these designs to facilitate
glial scar degradation and promote neural tissue regeneration af-
ter injury.

4. Experimental Section
Materials: Monomers 2-Diethylamino ethyl methacry-

late (DEAEMA), Hydroxypropyl methacrylate (2-HPMA), [2-
(Methacryloyloxy)ethyl]trimethylammonium chloride solution
(TMAEMA), N-[3-(Dimethylamino)propyl]methacrylamide (DMAPMA)
were purchased from Sigma-Aldrich, Methyl methacrylate (MMA)
and 3-Sulfopropyl methacrylate potassium salt (SPMA) from VWR,
Butyl methacrylate (BMA) from Alfa Aesar and Poly(ethyleneglycol)
(n) monomethyl ether monomethacrylate (PEGMA, Mn ≈400) from
Polysciences. Monomers were deinhibited prior to use by passing over
mono-methyl ether hydroxyquinone (MEHQ) inhibitor removal resin.
Chemicals Ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate, Sodium
Chloride, Magnesium Chloride, Calcium Chloride, Sodium Phosphate
(mono and di basic), Lithium Bromide were purchased from Sigma-
Aldrich, Zinc Tetraphenyl Porphyrin, Potassium Chloride, Dimethyl
Sulfoxide (DMSO) from Fisher Scientific, Potassium phosphate (mono
and dibasic) and Sodium Acetate anhydrous from VWR. Chondroitin
sulfate sodium salt from bovine cartilage was purchased from Sigma-
Aldrich. Recombinant Proteus vulgaris Chondroitinase ABC Protein (20 μg,
0.809 mg mL−1 stock concentration), was purchased from R&D Systems
(6877-GH-020).

Automated PET-RAFT Synthesis: Polymer libraries were prepared as
previously described.[11a] Briefly, Hamilton MLSTARlet sequences and pro-
cesses were generated from Python with sample concentration, reagent
volumes, and well position. Files containing reaction information were
transferred to the Hamilton MLSTARlet to prime the robotic transfers.
Stock solutions of monomer (2 m), ethyl 2-(phenylcarbonothioylthio)-
2-phenylacetate (RAFT agent, 100 or 50 × 10−3 m) and ZnTPP (4 or
2 × 10−3 m) were prepared in DMSO and pipetted into 1 mL aliquots.
Aliquots were loaded into a Hamilton MLSTARlet liquid handling robot
and automatically pipetted into 96-well clear flat-bottom polypropylene

well plates (Greiner bio-one). Monomer/CTA ratio was varied from 100–
400 while ZnTPP/CTA remained at 0.01. Polymer mixtures were dispensed
to a total volume of 200 μL and a final monomer concentration of 1 m.
They were then covered with a well-plate sealing tape and radiated under
560 nm LED light (5 mW cm−2, TCP 12-Watt Yellow LED BR30 bulb) for
16 h.

Seed Library Design: Polymers that make up the seed library incor-
porated combinations of eight monomer chemistries. As previously de-
scribed, these monomers were classified into three groups based on their
logP and pKa values: hydrophobic, hydrophilic, and ionic. This allows for
an extremely large number of physiochemically distinct copolymers. The
initial seed library was therefore designed in a way such that each copoly-
mer composition had a maximum of four distinct monomers. The compo-
sitions of the 504 polymers were varied systematically, and the fraction of
incorporation of any one particular monomer was limited to be no more
than 70% in a single polymer composition. This ensured that the copoly-
mer compositions in the seed library were chemically diverse. Another
factor that was considered was the solubility of copolymers in aqueous
buffers. For example, a copolymer with 80% BMA, 10% MMA and 10%
2-HPMA will be insoluble in aqueous buffer solutions because of the ex-
treme hydrophobic nature of the copolymer resulting in unreliable results.
Therefore, the seed library only allowed up to 70% of hydrophobic content.
The list of compositions constituting the seed library is provided in Table
S5 (Supporting Information).

Machine Learning: The Python libraries Scikit-learn v0.24.1 and Hy-
peropt v0.2.5 were used to optimize Gaussian Process Regression (GPR)
models to predict REA from a feature vector describing a copolymer.[13]

The input feature vector for each copolymer was a size-explicit com-
position vector, which here is a nine-dimensional vector with the chain
length divided by 200 (the maximum prescribed chain length) in the
first dimension and the fractional incorporation of each of the eight pos-
sible monomers in the remaining dimensions.[14] Nested k-fold cross-
validation was used to construct the GPR models prior to each iteration of
proposed polymers. In particular, the dataset was first split into five outer
folds. For each outer fold, a set of optimal hyperparameters (i.e., those
present in the radial basis function kernel and white noise kernel) were
obtained by 20-fold cross-validation over the remaining outer folds. This
yielded five sets of hyperparameters, which were averaged to obtain a final
set of hyperparameters. Using these hyperparameters, a final GPR model
was trained with all experimental data acquired to that point. In all cases,
models were optimized by minimizing the average mean squared error of
a power-transform of the REA.

The final GPR model was used in tandem with a Bayesian optimization
scheme to identify 200 new copolymers that maximize a modified expected
improvement (EI) acquisition function of the form:

EI (x) = (𝜇x − 𝜏∗ − 𝜉)Φ
(
𝜇x − 𝜏∗ − 𝜉

𝜎x

)
+ 𝜎x𝜙

(
𝜇x − 𝜏∗ − 𝜉

𝜎x

)
+ 𝜋 (x)

(1)

In Equation (1), x denotes the feature vector for the copolymer, 𝜇x and
𝜎x are the corresponding predicted mean and standard deviation from
the GPR model, 𝜏* indicates the maximum predicted mean from the GPR
model amongst proposed or synthesized copolymers. In addition, Φ(z)
and 𝜑(z) respectively denote the standard normal cumulative and proba-
bility density distribution functions associated with a random variable z,
and 𝜉 is a hyperparameter that controls the balance between exploration
and exploitation. Finally, 𝜋(x) is a penalty function associated with design
x, which is computed as

𝜋 (x) = 100H
(

d − 0.05
√

2
)[

1 − tanh

(
−d

1 − 0.05
√

2

)]
(2)

where H( · ) denotes the Heaviside function and d = min
xj∈A

|x − xj| yields

the minimum Euclidean distance between the polymer x and all previously
tested or proposed polymers, forming the set A. Each of the 200 polymers
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produced optimize Equation (1) with a different value of 𝜉. In particular,
200 𝜉 values that are base-10 logarithmically spaced, starting at 0.001 and
ending at 30 are considered.

To further promote diversity in the polymers proposed for synthesis, the
initial 200 candidates were downselected to 24 polymers using an unsu-
pervised learning approach based on the DBSCAN and k-Means clustering
algorithms.[13b,15] For DBSCAN, the maximum allowable distance for two

samples to be in the same neighborhood was set as 0.05
√

2, and the mini-
mum number of samples to be considered a cluster was three. In prior dis-
cussion, the appearance of the quantity 0.05

√
2 originates from the notion

that polymers that differ by 0.05 in terms of their fraction of incorporation
for one component are reliably distinct in the automated synthesis. Rep-
resentative samples from the clusters were subsequently identified based
on their proximity to the cluster centroid. These representative samples,
as well as any noise samples, were further considered as potential candi-
dates. In the event that DBSCAN produced greater than 24 candidate poly-
mers, these were then downselected using k-Means clustering with k = 24.
As before, representative samples were based on proximity to the cluster
centroid. The net result of this filtering was identification of 24 chemically
distinct candidate polymers. Following experimental synthesis and evalu-
ation of these 24 proposed polymers, the newly acquired data would be
added to the dataset, and the process, beginning with the training of a
new GPR model was repeated. Three iterations of active learning with this
protocol were conducted. The first iteration of active learning used a GPR
model trained on the seed library.

Thermal Stability Assay: Activity of PECs was evaluated by their abil-
ity to digest chondroitin sulfate substrate resulting in unsaturated disac-
charides. Briefly, polymers were synthesized and diluted in DMSO before
further dilution into assay buffer (aCSF: 149 × 10−3 m NaCl, 3 × 10−3 m
KCl, 0.8 × 10−3 m MgCl2, 1.4 × 10−3 m CaCl2 1.5 × 10−3 m Na2HPO4,
0.2 × 10−3 m NaH2PO4, pH 7.4) to a final concentration of 25 × 10−6 m
(<1% DMSO). Copolymers that either gelled in DMSO due to high hy-
drophobicity or precipitated in aCSF buffer were excluded from further
experiments. While some gelled polymers exhibited enzyme protection
capability after manually redissolving the gel in a more suitable solvent,
they were excluded from the dataset used to train the GPR models due
to inconsistent sample handling. All iterative stabilization experiments
were performed for 24 h at 37 °C and at a fixed polymer concentration
of 12.5 × 10−6 m. 15 μL of 25 × 10−6 m polymer samples were mixed with
15 μL of 2 ng μL−1 ChABC (8.69 × 10−9 m) in UV-star polystyrene 384 well
plates that were thermally sealed with a plate sealing film before being
thermally challenged in an incubator at 37 °C for 24 h. Substrate solution
was prepared by diluting 10 mg mL−1 of chondroitin sulfate in DI water
to a final concentration of 4 mg mL−1 in assay buffer. 30 uL of 4 mg mL−1

substrate was added to 30 μL of polymer-enzyme complexes and an in-
crease in absorbance was measured in kinetic mode for 60 min at 232 nm
with 20 s intervals at 25 °C. The initial rate of change of absorbance was
used to calculate the specific enzyme activity using the following equation.

Specific Activity

=
Adjusted Vmax

(
OD
min

)
× well volume (L) × 1012

(
pmol
mol

)
ext coeff

(
M−1 cm−1

)
× path correction × amount of enzyme (𝜇g)

(3)

Ext Coeff for CS substrate was 3800 M−1 cm−1 and path correction was
0.95 cm.

Polymer Characterization: The molecular weight (Mw and Mn) and dis-
persity (Ð) of selected polymers were measured by gel permeation chro-
matography (GPC) using an Agilent 1260 Infinity II. Polymer samples were
eluted through a Phenomenex 5.0 μm guard column (50 × 7.5 mm) pre-
ceded by two Phenomenex Phenogel columns (10E4 and 10E3 Å). GPC
calibration was completed with Agilent PMMA standards. Polymers were
prepared at 50:1 eluent/polymer ratio in DMF and filtered with a 0.45 μm
PTFE filter. Polymer conversion was calculated by obtaining 1H NMR spec-

tra using a Varian VNMRS 500 MHz spectrometer with mesitylene as an
internal standard and processed using Mestrenova 11.0.4.

Dynamic Light Scattering (DLS): DLS of polymers and polymer-
enzyme mixtures were performed on a DynaPro DLS Plate Reader III, Wy-
att Technologies. Concentration of ChABC for DLS experiments was main-
tained at 0.2 mg mL−1 while polymer concentration was at 2 mg mL−1. The
data was collected using a wavelength of 830 nm and a scattering angle
of 173°. Fifteen acquisitions were collected for each sample with an acqui-
sition time of 5 s per acquisition using auto attenuation. Regularization
analysis was performed using Rayleigh spheres model for hydrodynamic
size measurement.

E18 Rat Cortical Astrocyte Isolation: For astrocyte cultures, cortical tis-
sues from Sprague Dawley rat embryos were purchased from BrainBits.
Prior to isolation, T-75 flasks were coated with 10 mL of PDL for at least
4 h at room temperature. On the day the tissue was received, it was
immediately dissociated for E18 cortical astrocyte isolation. Briefly, the
media in which the tissue was preserved was removed and stored for
a later step. The tissue was then incubated in 2 mL of cell dissociation
media composed of Hibernate-E without Calcium (BrainBits) media con-
taining papain (BrainBits, 2 mg mL−1) for 10 min at 37 °C. The cell dis-
sociation media was removed, and the preservation media was re-added
to the tissue. The tissue was then mechanically dissociated with a fire-
polished Pasteur pipette. The cell suspension was spun down (200 RCF
for 1 min), the supernatant was removed, and the cells were re-suspended
in 3 mL of “astrocyte maintenance media” composed of low glucose Dul-
becco’s Modified Eagle Medium (DMEM, Gibco) containing sodium pyru-
vate and L-glutamine and supplemented with 10% fetal bovine serum
(FBS, Gibco) + 1% penicillin-streptomycin (PS, 10000 U mL−1, Gibco).
The isolated astrocytes were then seeded on to the pre-coated T-75 flasks
at a density of 1 million cells per flask. The media was changed 24 h af-
ter plating and subsequently changed every 3–4 days until 70% confluency
was reached. Astrocytes were used anywhere between P1 and P3.

Cytotoxicity: Astrocytes were seeded onto 24 well-plates at a density of
50 000 cells per well and were allowed to attach overnight. On the day of
the experiment, the media was changed and 100 μL of polymer at varying
concentrations were added for final concentrations of 6.25–400 × 10−6 m.
After 24 h, supernatants were collected, and viability was assessed via
LIVE/DEAD (Invitrogen) assay according to manufacturer instructions.
Briefly, cells were incubated with 1.5 μg mL−1 calcein-AM, 1.3 μg mL−1

ethidium-homodimer-1, and 2 μg mL−1 Hoechst-33342 (Invitrogen) for
10–15 min, followed by three washes with media. The cells were subse-
quently fixed with 200 μL of 4% paraformaldehyde (PFA, Sigma Aldrich)
per well. After 15 min of PFA incubation, 600 μL of phosphate-buffered
saline (PBS) was added to each well to dilute the PFA to 1%. The plate was
then stored at 4 °C for any future analysis. The supernatants were later ana-
lyzed for TNF-𝛼 levels via an enzyme linked immunosorbent assay (ELISA,
BioLegend) according to manufacturer instructions.

Astrocyte Inflammation in Presence of Copolymers: Astrocytes were
seeded onto 24 well-plates at a density of 50 000 cells per well and were
allowed to attach overnight. On the day of the experiment, the media was
switched to low FBS media (low glucose DMEM containing sodium pyru-
vate and L-glutamine and supplemented with 1% FBS+ 1% PS) and 100 μL
of polymer at varying concentrations were added for final concentrations
of 6.25–400 × 10−6 m. Control groups for the study included astrocytes
exposed to ultrapure lipopolysaccharide (LPS, Invivogen, 4 μg mL−1) and
without LPS, a well-known inflammatory stimulant. After 24 h, cell super-
natants were collected, and cells were fixed with PFA as described above.
Activation was determined by evaluating secretion of TNF-𝛼 via ELISA.

Statistical Analysis: All enzyme-activity measurements for active learn-
ing iterations 1–3 were performed in triplicates. Cytotoxicity and inflamma-
tion experiments were measured with a sample size of n = 6–9, and the
statistical significance was assessed using Tukey’s paired comparison test.
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